top of page

Original papers


Fujita, N., Girada, S., Vogler, G., Bodmer, R., Kiger A.

PI(4,5)P2 role in Transverse-tubule membrane formation and muscle function.



Shioda, T., Takahashi, I., Ikenaka, K., Fujita, N., Kanki, T., Oka, T., Mochizuki, H., Antebi, A., Yoshimori, T., and Nakamura, S.

Neuronal MML-1/MXL-2 regulates systemic aging via glutamate transporter and cell nonautonomous autophagic and peroxidase activity.

PNAS (2023) 120 (39): e2221553120


Murakawa, T., Nakamura, T., Kawaguchi, K., Murayama, F., Zhao, N., Stasevich, T., Kimura, H., and Fujita, N.

A Drosophila Toolkit for HA-tagged Proteins Unveiled a Block in Autophagy Flux in the Last Instar Larval Fat Body.

Development (2022) 149 (6): dev200243

Selected as the cover of Development vol.149 (6).


Murakawa, T., Kiger, A.A., Sakamaki, Y., Fukuda, M., and Fujita, N.

An Autophagy-Dependent Tubular Lysosomal Network Synchronizes Degradative Activity Required for Muscle Remodeling.

J Cell Sci (2020) 133 (21): jcs.248336 


Homma, Y., Kinoshita, R., Kuchitsu, Y., Wawro, P., Marubashi, S., Oguchi, M., Ishida, M., Fujita, N., and Fukuda, M.

Comprehensive knockout analysis of the Rab family GTPases in epithelial cells.

J Cell Biol (2019) jcb.201810134




Kuchitsu, Y., Homma, Y., Fujita, N.#, and Fukuda, M.#

Rab7 knockout unveiled regulated autolysosome maturation induced by glutamine starvation.  

J Cell Sci (2018) 131, jcs215442 (# co-corresponding authors)




Fujita, N.#, Huang, W., Lin, T.H., Groulx, J.F., Jean, S., Nguyen, J., Kuchitsu, Y., Koyama-Honda, I., Mizushima, N., Fukuda, M., and Kiger, A.A.#

Genetic screen in Drosophila muscle identifies autophagy-mediated T-tubule remodeling and a Rab2 role in autophagy. 

Elife (2017) 6. e23367 (# co-corresponding authors)




Imai, K., Hao, F., Fujita, N., Tsuji, Y., Oe, Y., Araki, Y., Hamasaki, M., Noda, T., and Yoshimori, T.

Atg9A trafficking through the recycling endosomes is required for autophagosome formation. 

J Cell Sci (2016) 129, 3781-3791. 


Hirano, S., Uemura, T., Annoh, H., Fujita, N., Waguri, S., Itoh, T., and Fukuda, M.

Differing susceptibility to autophagic degradation of two LC3-binding proteins: SQSTM1/p62 and TBC1D25/OATL1. 

Autophagy (2016) 12, 312-326.




Kobayashi, I., Kobayashi-Sun, J., Kim, A.D., Pouget, C., Fujita, N., Suda, T., and Traver, D.

Jam1a-Jam2a interactions regulate haematopoietic stem cell fate through Notch signalling

Nature (2014) 512, 319-323.


Choi, J., Park, S., Biering, S.B., Selleck, E., Liu, C.Y., Zhang, X., Fujita, N., Saitoh, T., Akira, S., Yoshimori, T., Sibley, L.D., Hwang, S., and Virgin, H.W. The parasitophorous vacuole membrane of Toxoplasma gondii is targeted for disruption by ubiquitin-like conjugation systems of autophagy. 

Immunity (2014) 40, 924-935.


Akaishi R, Yamada T, Kakabayashi K, Hishihara H, Furuta I, Kojima K, Morikawa M, Fujita N, and Minakami H.

Autophagy in the placenta of women with hypertensive disorders in pregnancy.

Placenta (2014) 35: 974-980.




Fujita, N.*, Morita, E.*, Itoh, T., Tanaka, A., Nakaoka, M., Osada, Y., Umemoto, T., Saitoh, T., Nakatogawa, H., Kobayashi, S., Haraguchi, T., Guan, J.L., Iwai, K., Tokunaga, F., Saito, K., Ishibashi, K., Akira, S., Fukuda, M., Noda, T., and Yoshimori, T.

Recruitment of the autophagic machinery to endosomes during infection is mediated by ubiquitin. 

J Cell Biol (2013) 203, 115-128. (* co-first authors)


Hamasaki, M., Furuta, N., Matsuda, A., Nezu, A., Yamamoto, A., Fujita, N., Oomori, H., Noda, T., Haraguchi, T., Hiraoka, Y., Amano, A., and Yoshimori, T.

Autophagosomes form at ER-mitochondria contact sites. 

Nature (2013) 495, 389-393.


Nakashima, A., Yamanaka-Tatematsu, M., Fujita, N., Koizumi, K., Shima, T., Yoshida, T., Nikaido, T., Okamoto, A., Yoshimori, T., and Saito, S.

Impaired autophagy by soluble endoglin, under physiological hypoxia in early pregnant period, is involved in poor placentation in preeclampsia.

Autophagy (2013) 9, 303-316.


Yamanaka-Tatematsu, M., Nakashima, A., Fujita, N., Shima, T., Yoshimori, T., and Saito, S.

Autophagy induced by HIF1alpha overexpression supports trophoblast invasion by supplying cellular energy. 

PLoS One (2013) 8, e76605.




Takahashi, A., Kimura, T., Takabatake, Y., Namba, T., Kaimori, J., Kitamura, H., Matsui, I., Niimura, F., Matsusaka, T., Fujita, N., Yoshimori, T., Isaka, Y., and Rakugi, H.

Autophagy guards against cisplatin-induced acute kidney injury. 

Am J Pathol (2012) 180, 517-525.


Shimizu, S., Takehara, T., Hikita, H., Kodama, T., Tsunematsu, H., Miyagi, T., Hosui, A., Ishida, H., Tatsumi, T., Kanto, T., Hiramatsu, N., Fujita, N., Yoshimori, T., and Hayashi, N.

Inhibition of autophagy potentiates the antitumor effect of the multikinase inhibitor sorafenib in hepatocellular carcinoma. 

Int J Cancer (2012) 131, 548-557.




Taguwa, S., Kambara, H., Fujita, N., Noda, T., Yoshimori, T., Koike, K., Moriishi, K., and Matsuura, Y. Dysfunction of autophagy participates in vacuole formation and cell death in cells replicating hepatitis C virus. 

J Virol (2011) 85, 13185-13194.


Ishibashi, K., Fujita, N., Kanno, E., Omori, H., Yoshimori, T., Itoh, T., and Fukuda, M.

Atg16L2, a novel isoform of mammalian Atg16L that is not essential for canonical autophagy despite forming an Atg12-5-16L2 complex. 

Autophagy (2011) 7, 1500-1513.




Furuta, N., Fujita, N., Noda, T., Yoshimori, T., and Amano, A.

Combinational soluble N-ethylmaleimide-sensitive factor attachment protein receptor proteins VAMP8 and Vti1b mediate fusion of antimicrobial and canonical autophagosomes with lysosomes. 

Mol Biol Cell (2010) 21, 1001-1010.


Moreau, K., Lacas-Gervais, S., Fujita, N., Sebbane, F., Yoshimori, T., Simonet, M., and Lafont, F.

Autophagosomes can support Yersinia pseudotuberculosis replication in macrophages. 

Cell Microbiol (2010) 12, 1108-1123.




Fujita, N., Saitoh, T., Kageyama, S., Akira, S., Noda, T., and Yoshimori, T.

Differential involvement of Atg16L1 in Crohn disease and canonical autophagy: analysis of the organization of the Atg16L1 complex in fibroblasts. 

J Biol Chem (2009) 284, 32602-32609.


Hayashi-Nishino, M., Fujita, N., Noda, T., Yamaguchi, A., Yoshimori, T., and Yamamoto, A.

A subdomain of the endoplasmic reticulum forms a cradle for autophagosome formation. 

Nat Cell Biol (2009) 11, 1433-1437.


Saitoh, T.*, Fujita, N.*, Hayashi, T., Takahara, K., Satoh, T., Lee, H., Matsunaga, K., Kageyama, S., Omori, H., Noda, T., Yamamoto, N., Kawai, T., Ishii, K., Takeuchi, O., Yoshimori, T., and Akira, S.

Atg9a controls dsDNA-driven dynamic translocation of STING and the innate immune response. 

Proc Natl Acad Sci U S A (2009) 106, 20842-20846. (* co-first authors)




Saitoh, T.*, Fujita, N.*, Jang, M.H., Uematsu, S., Yang, B.G., Satoh, T., Omori, H., Noda, T., Yamamoto, N., Komatsu, M., Tanaka, K., Kawai, T., Tsujimura, T., Takeuchi, O., Yoshimori, T., and Akira, S.

Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1beta production. 

Nature (2008) 456, 264-268. (* co-first authors)


Fujita, N., Hayashi-Nishino, M., Fukumoto, H., Omori, H., Yamamoto, A., Noda, T., and Yoshimori, T.

An Atg4B mutant hampers the lipidation of LC3 paralogues and causes defects in autophagosome closure. 

Mol Biol Cell (2008) 19, 4651-4659.


Fujita, N., Itoh, T., Omori, H., Fukuda, M., Noda, T., and Yoshimori, T.

The Atg16L complex specifies the site of LC3 lipidation for membrane biogenesis in autophagy. 

Mol Biol Cell (2008) 19, 2092-2100.


Itoh, T., Fujita, N., Kanno, E., Yamamoto, A., Yoshimori, T., and Fukuda, M.

Golgi-resident small GTPase Rab33B interacts with Atg16L and modulates autophagosome formation. 

Mol Biol Cell (2008) 19, 2916-2925.


Fujita, N., Tamura, A., Higashidani, A., Tonozuka, T., Freeze, H.H., and Nishikawa, A.

The relative contribution of mannose salvage pathways to glycosylation in PMI-deficient mouse embryonic fibroblast cells. 

FEBS J (2008) 275, 788-798.




Kawaguchi, K. and Fujita, N.

Shaping Transverse-Tubules: Central Mechanisms that Play a Role in the Cytosol Zoning for Muscle Contraction.

The Journal of Biochemistry (2023) mvad083,

Klionsky DJ. et al.

Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)

Autophagy (2021) 17, 1-382.

Noda, T., Kageyama, S., Fujita, N., and Yoshimori, T.

Three-Axis Model for Atg Recruitment in Autophagy against Salmonella. 

Int J Cell Biol (2012) 2012, 389562.


Fujita, N. and Yoshimori, T.

Ubiquitination-mediated autophagy against invading bacteria. 

Curr Opin Cell Biol (2011) 23, 492-497.


Saitoh, T., Fujita, N., Yoshimori, T., and Akira, S.

Regulation of dsDNA-induced innate immune responses by membrane trafficking. 

Autophagy (2010) 6, 430-432.


Hayashi-Nishino, M., Fujita, N., Noda, T., Yamaguchi, A., Yoshimori, T., and Yamamoto, A.

Electron tomography reveals the endoplasmic reticulum as a membrane source for autophagosome formation. 

Autophagy (2010) 6, 301-303.


Noda, T., Fujita, N., and Yoshimori, T.

The late stages of autophagy: how does the end begin? 

Cell Death Differ. (2009) 16, 984-90.


Fujita, N., Noda, T., and Yoshimori, T.

Atg4B(C74A) hampers autophagosome closure: a useful protein for inhibiting autophagy. 

Autophagy (2009) 5, 88-89.


Noda, T., Fujita, N., and Yoshimori, T.

The Ubi brothers reunited. 

Autophagy (2008) 4, 540-541.






実験医学 41 (11) (2023) DOI: 10.18958/7277-00001-0000510-00



生化学 94 (5): 711-714 (2022)



医学のあゆみ 272 (9) (2020)



実験医学 35: 2516-2523 (2017)



『オートファジー 〜分子機構と疾患との関連〜』

BIO Clinica 26: 269-372 (2011)




実験医学 27: 2930-2936 (2009) 


齊藤達哉、藤田尚信、吉森 保、審良静男
細胞 41(7): 17-20 (2009)


齊藤達哉、藤田尚信、吉森 保、審良静男
蛋白質核酸酵素 増刊号 感染現象54(8): 1119-1124 (2009)


齊藤達哉、藤田尚信、吉森 保、審良静男
実験医学 5月号27(8) : 1247-1250 (2009) 


蛋白質核酸酵素 53(16) : 2106-2021 (2008)


齊藤達哉、藤田尚信、吉森 保、審良静男
蛋白質核酸酵素 53: 2279-2285 (2008)







メンブレントラフィック(福田光則、吉森保編・化学同人)(2016) p226-235


Kimura, S., Fujita, N., Noda, T., and Yoshimori, T.

Monitoring autophagy in mammalian cultured cells through the dynamics of LC3.

Methods Enzymol (2009) 452, 1-12.

Development 149_6.jpeg
bottom of page