Original papers
2024
Fujita, N., Girada, S., Vogler, G., Bodmer, R., Kiger A.
PI(4,5)P2 role in Transverse-tubule membrane formation and muscle function.
bioRxiv https://doi.org/10.1101/2024.01.31.578124
2023
Shioda, T., Takahashi, I., Ikenaka, K., Fujita, N., Kanki, T., Oka, T., Mochizuki, H., Antebi, A., Yoshimori, T., and Nakamura, S.
Neuronal MML-1/MXL-2 regulates systemic aging via glutamate transporter and cell nonautonomous autophagic and peroxidase activity.
PNAS (2023) 120 (39): e2221553120
2022
Murakawa, T., Nakamura, T., Kawaguchi, K., Murayama, F., Zhao, N., Stasevich, T., Kimura, H., and Fujita, N.
A Drosophila Toolkit for HA-tagged Proteins Unveiled a Block in Autophagy Flux in the Last Instar Larval Fat Body.
Development (2022) 149 (6): dev200243
Selected as the cover of Development vol.149 (6).
2020
Murakawa, T., Kiger, A.A., Sakamaki, Y., Fukuda, M., and Fujita, N.
An Autophagy-Dependent Tubular Lysosomal Network Synchronizes Degradative Activity Required for Muscle Remodeling.
J Cell Sci (2020) 133 (21): jcs.248336
2019
Homma, Y., Kinoshita, R., Kuchitsu, Y., Wawro, P., Marubashi, S., Oguchi, M., Ishida, M., Fujita, N., and Fukuda, M.
Comprehensive knockout analysis of the Rab family GTPases in epithelial cells.
J Cell Biol (2019) jcb.201810134
2018
Kuchitsu, Y., Homma, Y., Fujita, N.#, and Fukuda, M.#
Rab7 knockout unveiled regulated autolysosome maturation induced by glutamine starvation.
J Cell Sci (2018) 131, jcs215442 (# co-corresponding authors)
2017
Fujita, N.#, Huang, W., Lin, T.H., Groulx, J.F., Jean, S., Nguyen, J., Kuchitsu, Y., Koyama-Honda, I., Mizushima, N., Fukuda, M., and Kiger, A.A.#
Genetic screen in Drosophila muscle identifies autophagy-mediated T-tubule remodeling and a Rab2 role in autophagy.
Elife (2017) 6. e23367 (# co-corresponding authors)
2016
Imai, K., Hao, F., Fujita, N., Tsuji, Y., Oe, Y., Araki, Y., Hamasaki, M., Noda, T., and Yoshimori, T.
Atg9A trafficking through the recycling endosomes is required for autophagosome formation.
J Cell Sci (2016) 129, 3781-3791.
Hirano, S., Uemura, T., Annoh, H., Fujita, N., Waguri, S., Itoh, T., and Fukuda, M.
Differing susceptibility to autophagic degradation of two LC3-binding proteins: SQSTM1/p62 and TBC1D25/OATL1.
Autophagy (2016) 12, 312-326.
2014
Kobayashi, I., Kobayashi-Sun, J., Kim, A.D., Pouget, C., Fujita, N., Suda, T., and Traver, D.
Jam1a-Jam2a interactions regulate haematopoietic stem cell fate through Notch signalling.
Nature (2014) 512, 319-323.
Choi, J., Park, S., Biering, S.B., Selleck, E., Liu, C.Y., Zhang, X., Fujita, N., Saitoh, T., Akira, S., Yoshimori, T., Sibley, L.D., Hwang, S., and Virgin, H.W. The parasitophorous vacuole membrane of Toxoplasma gondii is targeted for disruption by ubiquitin-like conjugation systems of autophagy.
Immunity (2014) 40, 924-935.
Akaishi R, Yamada T, Kakabayashi K, Hishihara H, Furuta I, Kojima K, Morikawa M, Fujita N, and Minakami H.
Autophagy in the placenta of women with hypertensive disorders in pregnancy.
Placenta (2014) 35: 974-980.
2013
Fujita, N.*, Morita, E.*, Itoh, T., Tanaka, A., Nakaoka, M., Osada, Y., Umemoto, T., Saitoh, T., Nakatogawa, H., Kobayashi, S., Haraguchi, T., Guan, J.L., Iwai, K., Tokunaga, F., Saito, K., Ishibashi, K., Akira, S., Fukuda, M., Noda, T., and Yoshimori, T.
Recruitment of the autophagic machinery to endosomes during infection is mediated by ubiquitin.
J Cell Biol (2013) 203, 115-128. (* co-first authors)
Hamasaki, M., Furuta, N., Matsuda, A., Nezu, A., Yamamoto, A., Fujita, N., Oomori, H., Noda, T., Haraguchi, T., Hiraoka, Y., Amano, A., and Yoshimori, T.
Autophagosomes form at ER-mitochondria contact sites.
Nature (2013) 495, 389-393.
Nakashima, A., Yamanaka-Tatematsu, M., Fujita, N., Koizumi, K., Shima, T., Yoshida, T., Nikaido, T., Okamoto, A., Yoshimori, T., and Saito, S.
Impaired autophagy by soluble endoglin, under physiological hypoxia in early pregnant period, is involved in poor placentation in preeclampsia.
Autophagy (2013) 9, 303-316.
Yamanaka-Tatematsu, M., Nakashima, A., Fujita, N., Shima, T., Yoshimori, T., and Saito, S.
Autophagy induced by HIF1alpha overexpression supports trophoblast invasion by supplying cellular energy.
PLoS One (2013) 8, e76605.
2012
Takahashi, A., Kimura, T., Takabatake, Y., Namba, T., Kaimori, J., Kitamura, H., Matsui, I., Niimura, F., Matsusaka, T., Fujita, N., Yoshimori, T., Isaka, Y., and Rakugi, H.
Autophagy guards against cisplatin-induced acute kidney injury.
Am J Pathol (2012) 180, 517-525.
Shimizu, S., Takehara, T., Hikita, H., Kodama, T., Tsunematsu, H., Miyagi, T., Hosui, A., Ishida, H., Tatsumi, T., Kanto, T., Hiramatsu, N., Fujita, N., Yoshimori, T., and Hayashi, N.
Inhibition of autophagy potentiates the antitumor effect of the multikinase inhibitor sorafenib in hepatocellular carcinoma.
Int J Cancer (2012) 131, 548-557.
2011
Taguwa, S., Kambara, H., Fujita, N., Noda, T., Yoshimori, T., Koike, K., Moriishi, K., and Matsuura, Y. Dysfunction of autophagy participates in vacuole formation and cell death in cells replicating hepatitis C virus.
J Virol (2011) 85, 13185-13194.
Ishibashi, K., Fujita, N., Kanno, E., Omori, H., Yoshimori, T., Itoh, T., and Fukuda, M.
Atg16L2, a novel isoform of mammalian Atg16L that is not essential for canonical autophagy despite forming an Atg12-5-16L2 complex.
Autophagy (2011) 7, 1500-1513.
2010
Furuta, N., Fujita, N., Noda, T., Yoshimori, T., and Amano, A.
Combinational soluble N-ethylmaleimide-sensitive factor attachment protein receptor proteins VAMP8 and Vti1b mediate fusion of antimicrobial and canonical autophagosomes with lysosomes.
Mol Biol Cell (2010) 21, 1001-1010.
Moreau, K., Lacas-Gervais, S., Fujita, N., Sebbane, F., Yoshimori, T., Simonet, M., and Lafont, F.
Autophagosomes can support Yersinia pseudotuberculosis replication in macrophages.
Cell Microbiol (2010) 12, 1108-1123.
2009
Fujita, N., Saitoh, T., Kageyama, S., Akira, S., Noda, T., and Yoshimori, T.
Differential involvement of Atg16L1 in Crohn disease and canonical autophagy: analysis of the organization of the Atg16L1 complex in fibroblasts.
J Biol Chem (2009) 284, 32602-32609.
Hayashi-Nishino, M., Fujita, N., Noda, T., Yamaguchi, A., Yoshimori, T., and Yamamoto, A.
A subdomain of the endoplasmic reticulum forms a cradle for autophagosome formation.
Nat Cell Biol (2009) 11, 1433-1437.
Saitoh, T.*, Fujita, N.*, Hayashi, T., Takahara, K., Satoh, T., Lee, H., Matsunaga, K., Kageyama, S., Omori, H., Noda, T., Yamamoto, N., Kawai, T., Ishii, K., Takeuchi, O., Yoshimori, T., and Akira, S.
Atg9a controls dsDNA-driven dynamic translocation of STING and the innate immune response.
Proc Natl Acad Sci U S A (2009) 106, 20842-20846. (* co-first authors)
2008
Saitoh, T.*, Fujita, N.*, Jang, M.H., Uematsu, S., Yang, B.G., Satoh, T., Omori, H., Noda, T., Yamamoto, N., Komatsu, M., Tanaka, K., Kawai, T., Tsujimura, T., Takeuchi, O., Yoshimori, T., and Akira, S.
Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1beta production.
Nature (2008) 456, 264-268. (* co-first authors)
Fujita, N., Hayashi-Nishino, M., Fukumoto, H., Omori, H., Yamamoto, A., Noda, T., and Yoshimori, T.
An Atg4B mutant hampers the lipidation of LC3 paralogues and causes defects in autophagosome closure.
Mol Biol Cell (2008) 19, 4651-4659.
Fujita, N., Itoh, T., Omori, H., Fukuda, M., Noda, T., and Yoshimori, T.
The Atg16L complex specifies the site of LC3 lipidation for membrane biogenesis in autophagy.
Mol Biol Cell (2008) 19, 2092-2100.
Itoh, T., Fujita, N., Kanno, E., Yamamoto, A., Yoshimori, T., and Fukuda, M.
Golgi-resident small GTPase Rab33B interacts with Atg16L and modulates autophagosome formation.
Mol Biol Cell (2008) 19, 2916-2925.
Fujita, N., Tamura, A., Higashidani, A., Tonozuka, T., Freeze, H.H., and Nishikawa, A.
The relative contribution of mannose salvage pathways to glycosylation in PMI-deficient mouse embryonic fibroblast cells.
FEBS J (2008) 275, 788-798.
Reviews
Kawaguchi, K. and Fujita, N.
Shaping Transverse-Tubules: Central Mechanisms that Play a Role in the Cytosol Zoning for Muscle Contraction.
The Journal of Biochemistry (2023) mvad083, https://doi.org/10.1093/jb/mvad083
Klionsky DJ. et al.
Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)
Autophagy (2021) 17, 1-382.
Noda, T., Kageyama, S., Fujita, N., and Yoshimori, T.
Three-Axis Model for Atg Recruitment in Autophagy against Salmonella.
Int J Cell Biol (2012) 2012, 389562.
Fujita, N. and Yoshimori, T.
Ubiquitination-mediated autophagy against invading bacteria.
Curr Opin Cell Biol (2011) 23, 492-497.
Saitoh, T., Fujita, N., Yoshimori, T., and Akira, S.
Regulation of dsDNA-induced innate immune responses by membrane trafficking.
Autophagy (2010) 6, 430-432.
Hayashi-Nishino, M., Fujita, N., Noda, T., Yamaguchi, A., Yoshimori, T., and Yamamoto, A.
Electron tomography reveals the endoplasmic reticulum as a membrane source for autophagosome formation.
Autophagy (2010) 6, 301-303.
Noda, T., Fujita, N., and Yoshimori, T.
The late stages of autophagy: how does the end begin?
Cell Death Differ. (2009) 16, 984-90.
Fujita, N., Noda, T., and Yoshimori, T.
Atg4B(C74A) hampers autophagosome closure: a useful protein for inhibiting autophagy.
Autophagy (2009) 5, 88-89.
Noda, T., Fujita, N., and Yoshimori, T.
The Ubi brothers reunited.
Autophagy (2008) 4, 540-541.
和文
藤田尚信
『リソソームの形態変化:機能制御の新たなかたち』
実験医学 41 (11) (2023) DOI: 10.18958/7277-00001-0000510-00
藤田尚信
『脂肪体における“変態ホルモン誘導性オートファジー”』
生化学 94 (5): 711-714 (2022)
中村毅、藤田尚信
『オートファジーの最後期過程―オートリソソームからリソソームの再生』
医学のあゆみ 272 (9) (2020)
朽津芳彦、藤田尚信、福田光則
『Rabによるオートファジーの制御』
実験医学 35: 2516-2523 (2017)
藤田尚信、吉森保
『オートファジー 〜分子機構と疾患との関連〜』
BIO Clinica 26: 269-372 (2011)
松永耕一、藤田尚信、吉森保
『オートファジーの駆動・制御機構の進化と疾患とのかかわり』
実験医学 27: 2930-2936 (2009)
齊藤達哉、藤田尚信、吉森 保、審良静男
オートファジーと炎症
細胞 41(7): 17-20 (2009)
齊藤達哉、藤田尚信、吉森 保、審良静男
オートファジーによる炎症反応制御
蛋白質核酸酵素 増刊号 感染現象54(8): 1119-1124 (2009)
齊藤達哉、藤田尚信、吉森 保、審良静男
オートファジー関連遺伝子Atg16L1はエンドトキシンによる炎症反応を制御する
実験医学 5月号27(8) : 1247-1250 (2009)
藤田尚信、松永耕一、野田健司、吉森保
哺乳類オートファジー研究の夜明け
蛋白質核酸酵素 53(16) : 2106-2021 (2008)
齊藤達哉、藤田尚信、吉森 保、審良静男
オートファジーと自然免疫応答
蛋白質核酸酵素 53: 2279-2285 (2008)
Books
藤田尚信『ショウジョウバエを用いたメンブレントラフィックの研究』
メンブレントラフィック(福田光則、吉森保編・化学同人)(2016) p226-235
Kimura, S., Fujita, N., Noda, T., and Yoshimori, T.
Monitoring autophagy in mammalian cultured cells through the dynamics of LC3.
Methods Enzymol (2009) 452, 1-12.